(0) Obligation:

Clauses:

div(0, Y, 0) :- no(zero(Y)).
div(X, Y, s(Z)) :- ','(no(zero(X)), ','(no(zero(Y)), ','(minus(X, Y, U), div(U, Y, Z)))).
minus(0, Y, 0).
minus(X, 0, X).
minus(s(X), s(Y), Z) :- minus(X, Y, Z).
zero(0).
no(X) :- ','(X, ','(!, failure(a))).
no(X1).
failure(b).

Query: div(g,g,a)

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph ICLP10.

(2) Obligation:

Clauses:

minusA(0, T92, 0).
minusA(T97, 0, T97).
minusA(s(T102), s(T103), X142) :- minusA(T102, T103, X142).
minusB(s(T84), s(T85), X118) :- minusA(T84, T85, X118).
divC(0, T17, 0).
divC(T47, T64, s(T35)) :- minusB(T47, T64, X54).
divC(T47, T64, s(T35)) :- ','(minusB(T47, T64, T71), divC(T71, T64, T35)).

Query: divC(g,g,a)

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes:
divC_in: (b,b,f)
minusB_in: (b,b,f)
minusA_in: (b,b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

divC_in_gga(0, T17, 0) → divC_out_gga(0, T17, 0)
divC_in_gga(T47, T64, s(T35)) → U3_gga(T47, T64, T35, minusB_in_gga(T47, T64, X54))
minusB_in_gga(s(T84), s(T85), X118) → U2_gga(T84, T85, X118, minusA_in_gga(T84, T85, X118))
minusA_in_gga(0, T92, 0) → minusA_out_gga(0, T92, 0)
minusA_in_gga(T97, 0, T97) → minusA_out_gga(T97, 0, T97)
minusA_in_gga(s(T102), s(T103), X142) → U1_gga(T102, T103, X142, minusA_in_gga(T102, T103, X142))
U1_gga(T102, T103, X142, minusA_out_gga(T102, T103, X142)) → minusA_out_gga(s(T102), s(T103), X142)
U2_gga(T84, T85, X118, minusA_out_gga(T84, T85, X118)) → minusB_out_gga(s(T84), s(T85), X118)
U3_gga(T47, T64, T35, minusB_out_gga(T47, T64, X54)) → divC_out_gga(T47, T64, s(T35))
divC_in_gga(T47, T64, s(T35)) → U4_gga(T47, T64, T35, minusB_in_gga(T47, T64, T71))
U4_gga(T47, T64, T35, minusB_out_gga(T47, T64, T71)) → U5_gga(T47, T64, T35, divC_in_gga(T71, T64, T35))
U5_gga(T47, T64, T35, divC_out_gga(T71, T64, T35)) → divC_out_gga(T47, T64, s(T35))

The argument filtering Pi contains the following mapping:
divC_in_gga(x1, x2, x3)  =  divC_in_gga(x1, x2)
0  =  0
divC_out_gga(x1, x2, x3)  =  divC_out_gga
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
minusB_in_gga(x1, x2, x3)  =  minusB_in_gga(x1, x2)
s(x1)  =  s(x1)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
minusA_in_gga(x1, x2, x3)  =  minusA_in_gga(x1, x2)
minusA_out_gga(x1, x2, x3)  =  minusA_out_gga(x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
minusB_out_gga(x1, x2, x3)  =  minusB_out_gga(x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x2, x4)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

divC_in_gga(0, T17, 0) → divC_out_gga(0, T17, 0)
divC_in_gga(T47, T64, s(T35)) → U3_gga(T47, T64, T35, minusB_in_gga(T47, T64, X54))
minusB_in_gga(s(T84), s(T85), X118) → U2_gga(T84, T85, X118, minusA_in_gga(T84, T85, X118))
minusA_in_gga(0, T92, 0) → minusA_out_gga(0, T92, 0)
minusA_in_gga(T97, 0, T97) → minusA_out_gga(T97, 0, T97)
minusA_in_gga(s(T102), s(T103), X142) → U1_gga(T102, T103, X142, minusA_in_gga(T102, T103, X142))
U1_gga(T102, T103, X142, minusA_out_gga(T102, T103, X142)) → minusA_out_gga(s(T102), s(T103), X142)
U2_gga(T84, T85, X118, minusA_out_gga(T84, T85, X118)) → minusB_out_gga(s(T84), s(T85), X118)
U3_gga(T47, T64, T35, minusB_out_gga(T47, T64, X54)) → divC_out_gga(T47, T64, s(T35))
divC_in_gga(T47, T64, s(T35)) → U4_gga(T47, T64, T35, minusB_in_gga(T47, T64, T71))
U4_gga(T47, T64, T35, minusB_out_gga(T47, T64, T71)) → U5_gga(T47, T64, T35, divC_in_gga(T71, T64, T35))
U5_gga(T47, T64, T35, divC_out_gga(T71, T64, T35)) → divC_out_gga(T47, T64, s(T35))

The argument filtering Pi contains the following mapping:
divC_in_gga(x1, x2, x3)  =  divC_in_gga(x1, x2)
0  =  0
divC_out_gga(x1, x2, x3)  =  divC_out_gga
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
minusB_in_gga(x1, x2, x3)  =  minusB_in_gga(x1, x2)
s(x1)  =  s(x1)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
minusA_in_gga(x1, x2, x3)  =  minusA_in_gga(x1, x2)
minusA_out_gga(x1, x2, x3)  =  minusA_out_gga(x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
minusB_out_gga(x1, x2, x3)  =  minusB_out_gga(x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x2, x4)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x4)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

DIVC_IN_GGA(T47, T64, s(T35)) → U3_GGA(T47, T64, T35, minusB_in_gga(T47, T64, X54))
DIVC_IN_GGA(T47, T64, s(T35)) → MINUSB_IN_GGA(T47, T64, X54)
MINUSB_IN_GGA(s(T84), s(T85), X118) → U2_GGA(T84, T85, X118, minusA_in_gga(T84, T85, X118))
MINUSB_IN_GGA(s(T84), s(T85), X118) → MINUSA_IN_GGA(T84, T85, X118)
MINUSA_IN_GGA(s(T102), s(T103), X142) → U1_GGA(T102, T103, X142, minusA_in_gga(T102, T103, X142))
MINUSA_IN_GGA(s(T102), s(T103), X142) → MINUSA_IN_GGA(T102, T103, X142)
DIVC_IN_GGA(T47, T64, s(T35)) → U4_GGA(T47, T64, T35, minusB_in_gga(T47, T64, T71))
U4_GGA(T47, T64, T35, minusB_out_gga(T47, T64, T71)) → U5_GGA(T47, T64, T35, divC_in_gga(T71, T64, T35))
U4_GGA(T47, T64, T35, minusB_out_gga(T47, T64, T71)) → DIVC_IN_GGA(T71, T64, T35)

The TRS R consists of the following rules:

divC_in_gga(0, T17, 0) → divC_out_gga(0, T17, 0)
divC_in_gga(T47, T64, s(T35)) → U3_gga(T47, T64, T35, minusB_in_gga(T47, T64, X54))
minusB_in_gga(s(T84), s(T85), X118) → U2_gga(T84, T85, X118, minusA_in_gga(T84, T85, X118))
minusA_in_gga(0, T92, 0) → minusA_out_gga(0, T92, 0)
minusA_in_gga(T97, 0, T97) → minusA_out_gga(T97, 0, T97)
minusA_in_gga(s(T102), s(T103), X142) → U1_gga(T102, T103, X142, minusA_in_gga(T102, T103, X142))
U1_gga(T102, T103, X142, minusA_out_gga(T102, T103, X142)) → minusA_out_gga(s(T102), s(T103), X142)
U2_gga(T84, T85, X118, minusA_out_gga(T84, T85, X118)) → minusB_out_gga(s(T84), s(T85), X118)
U3_gga(T47, T64, T35, minusB_out_gga(T47, T64, X54)) → divC_out_gga(T47, T64, s(T35))
divC_in_gga(T47, T64, s(T35)) → U4_gga(T47, T64, T35, minusB_in_gga(T47, T64, T71))
U4_gga(T47, T64, T35, minusB_out_gga(T47, T64, T71)) → U5_gga(T47, T64, T35, divC_in_gga(T71, T64, T35))
U5_gga(T47, T64, T35, divC_out_gga(T71, T64, T35)) → divC_out_gga(T47, T64, s(T35))

The argument filtering Pi contains the following mapping:
divC_in_gga(x1, x2, x3)  =  divC_in_gga(x1, x2)
0  =  0
divC_out_gga(x1, x2, x3)  =  divC_out_gga
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
minusB_in_gga(x1, x2, x3)  =  minusB_in_gga(x1, x2)
s(x1)  =  s(x1)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
minusA_in_gga(x1, x2, x3)  =  minusA_in_gga(x1, x2)
minusA_out_gga(x1, x2, x3)  =  minusA_out_gga(x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
minusB_out_gga(x1, x2, x3)  =  minusB_out_gga(x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x2, x4)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x4)
DIVC_IN_GGA(x1, x2, x3)  =  DIVC_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x4)
MINUSB_IN_GGA(x1, x2, x3)  =  MINUSB_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x4)
MINUSA_IN_GGA(x1, x2, x3)  =  MINUSA_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x4)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x2, x4)
U5_GGA(x1, x2, x3, x4)  =  U5_GGA(x4)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIVC_IN_GGA(T47, T64, s(T35)) → U3_GGA(T47, T64, T35, minusB_in_gga(T47, T64, X54))
DIVC_IN_GGA(T47, T64, s(T35)) → MINUSB_IN_GGA(T47, T64, X54)
MINUSB_IN_GGA(s(T84), s(T85), X118) → U2_GGA(T84, T85, X118, minusA_in_gga(T84, T85, X118))
MINUSB_IN_GGA(s(T84), s(T85), X118) → MINUSA_IN_GGA(T84, T85, X118)
MINUSA_IN_GGA(s(T102), s(T103), X142) → U1_GGA(T102, T103, X142, minusA_in_gga(T102, T103, X142))
MINUSA_IN_GGA(s(T102), s(T103), X142) → MINUSA_IN_GGA(T102, T103, X142)
DIVC_IN_GGA(T47, T64, s(T35)) → U4_GGA(T47, T64, T35, minusB_in_gga(T47, T64, T71))
U4_GGA(T47, T64, T35, minusB_out_gga(T47, T64, T71)) → U5_GGA(T47, T64, T35, divC_in_gga(T71, T64, T35))
U4_GGA(T47, T64, T35, minusB_out_gga(T47, T64, T71)) → DIVC_IN_GGA(T71, T64, T35)

The TRS R consists of the following rules:

divC_in_gga(0, T17, 0) → divC_out_gga(0, T17, 0)
divC_in_gga(T47, T64, s(T35)) → U3_gga(T47, T64, T35, minusB_in_gga(T47, T64, X54))
minusB_in_gga(s(T84), s(T85), X118) → U2_gga(T84, T85, X118, minusA_in_gga(T84, T85, X118))
minusA_in_gga(0, T92, 0) → minusA_out_gga(0, T92, 0)
minusA_in_gga(T97, 0, T97) → minusA_out_gga(T97, 0, T97)
minusA_in_gga(s(T102), s(T103), X142) → U1_gga(T102, T103, X142, minusA_in_gga(T102, T103, X142))
U1_gga(T102, T103, X142, minusA_out_gga(T102, T103, X142)) → minusA_out_gga(s(T102), s(T103), X142)
U2_gga(T84, T85, X118, minusA_out_gga(T84, T85, X118)) → minusB_out_gga(s(T84), s(T85), X118)
U3_gga(T47, T64, T35, minusB_out_gga(T47, T64, X54)) → divC_out_gga(T47, T64, s(T35))
divC_in_gga(T47, T64, s(T35)) → U4_gga(T47, T64, T35, minusB_in_gga(T47, T64, T71))
U4_gga(T47, T64, T35, minusB_out_gga(T47, T64, T71)) → U5_gga(T47, T64, T35, divC_in_gga(T71, T64, T35))
U5_gga(T47, T64, T35, divC_out_gga(T71, T64, T35)) → divC_out_gga(T47, T64, s(T35))

The argument filtering Pi contains the following mapping:
divC_in_gga(x1, x2, x3)  =  divC_in_gga(x1, x2)
0  =  0
divC_out_gga(x1, x2, x3)  =  divC_out_gga
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
minusB_in_gga(x1, x2, x3)  =  minusB_in_gga(x1, x2)
s(x1)  =  s(x1)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
minusA_in_gga(x1, x2, x3)  =  minusA_in_gga(x1, x2)
minusA_out_gga(x1, x2, x3)  =  minusA_out_gga(x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
minusB_out_gga(x1, x2, x3)  =  minusB_out_gga(x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x2, x4)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x4)
DIVC_IN_GGA(x1, x2, x3)  =  DIVC_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x4)
MINUSB_IN_GGA(x1, x2, x3)  =  MINUSB_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x4)
MINUSA_IN_GGA(x1, x2, x3)  =  MINUSA_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x4)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x2, x4)
U5_GGA(x1, x2, x3, x4)  =  U5_GGA(x4)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 6 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINUSA_IN_GGA(s(T102), s(T103), X142) → MINUSA_IN_GGA(T102, T103, X142)

The TRS R consists of the following rules:

divC_in_gga(0, T17, 0) → divC_out_gga(0, T17, 0)
divC_in_gga(T47, T64, s(T35)) → U3_gga(T47, T64, T35, minusB_in_gga(T47, T64, X54))
minusB_in_gga(s(T84), s(T85), X118) → U2_gga(T84, T85, X118, minusA_in_gga(T84, T85, X118))
minusA_in_gga(0, T92, 0) → minusA_out_gga(0, T92, 0)
minusA_in_gga(T97, 0, T97) → minusA_out_gga(T97, 0, T97)
minusA_in_gga(s(T102), s(T103), X142) → U1_gga(T102, T103, X142, minusA_in_gga(T102, T103, X142))
U1_gga(T102, T103, X142, minusA_out_gga(T102, T103, X142)) → minusA_out_gga(s(T102), s(T103), X142)
U2_gga(T84, T85, X118, minusA_out_gga(T84, T85, X118)) → minusB_out_gga(s(T84), s(T85), X118)
U3_gga(T47, T64, T35, minusB_out_gga(T47, T64, X54)) → divC_out_gga(T47, T64, s(T35))
divC_in_gga(T47, T64, s(T35)) → U4_gga(T47, T64, T35, minusB_in_gga(T47, T64, T71))
U4_gga(T47, T64, T35, minusB_out_gga(T47, T64, T71)) → U5_gga(T47, T64, T35, divC_in_gga(T71, T64, T35))
U5_gga(T47, T64, T35, divC_out_gga(T71, T64, T35)) → divC_out_gga(T47, T64, s(T35))

The argument filtering Pi contains the following mapping:
divC_in_gga(x1, x2, x3)  =  divC_in_gga(x1, x2)
0  =  0
divC_out_gga(x1, x2, x3)  =  divC_out_gga
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
minusB_in_gga(x1, x2, x3)  =  minusB_in_gga(x1, x2)
s(x1)  =  s(x1)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
minusA_in_gga(x1, x2, x3)  =  minusA_in_gga(x1, x2)
minusA_out_gga(x1, x2, x3)  =  minusA_out_gga(x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
minusB_out_gga(x1, x2, x3)  =  minusB_out_gga(x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x2, x4)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x4)
MINUSA_IN_GGA(x1, x2, x3)  =  MINUSA_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINUSA_IN_GGA(s(T102), s(T103), X142) → MINUSA_IN_GGA(T102, T103, X142)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
MINUSA_IN_GGA(x1, x2, x3)  =  MINUSA_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUSA_IN_GGA(s(T102), s(T103)) → MINUSA_IN_GGA(T102, T103)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(14) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • MINUSA_IN_GGA(s(T102), s(T103)) → MINUSA_IN_GGA(T102, T103)
    The graph contains the following edges 1 > 1, 2 > 2

(15) YES

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIVC_IN_GGA(T47, T64, s(T35)) → U4_GGA(T47, T64, T35, minusB_in_gga(T47, T64, T71))
U4_GGA(T47, T64, T35, minusB_out_gga(T47, T64, T71)) → DIVC_IN_GGA(T71, T64, T35)

The TRS R consists of the following rules:

divC_in_gga(0, T17, 0) → divC_out_gga(0, T17, 0)
divC_in_gga(T47, T64, s(T35)) → U3_gga(T47, T64, T35, minusB_in_gga(T47, T64, X54))
minusB_in_gga(s(T84), s(T85), X118) → U2_gga(T84, T85, X118, minusA_in_gga(T84, T85, X118))
minusA_in_gga(0, T92, 0) → minusA_out_gga(0, T92, 0)
minusA_in_gga(T97, 0, T97) → minusA_out_gga(T97, 0, T97)
minusA_in_gga(s(T102), s(T103), X142) → U1_gga(T102, T103, X142, minusA_in_gga(T102, T103, X142))
U1_gga(T102, T103, X142, minusA_out_gga(T102, T103, X142)) → minusA_out_gga(s(T102), s(T103), X142)
U2_gga(T84, T85, X118, minusA_out_gga(T84, T85, X118)) → minusB_out_gga(s(T84), s(T85), X118)
U3_gga(T47, T64, T35, minusB_out_gga(T47, T64, X54)) → divC_out_gga(T47, T64, s(T35))
divC_in_gga(T47, T64, s(T35)) → U4_gga(T47, T64, T35, minusB_in_gga(T47, T64, T71))
U4_gga(T47, T64, T35, minusB_out_gga(T47, T64, T71)) → U5_gga(T47, T64, T35, divC_in_gga(T71, T64, T35))
U5_gga(T47, T64, T35, divC_out_gga(T71, T64, T35)) → divC_out_gga(T47, T64, s(T35))

The argument filtering Pi contains the following mapping:
divC_in_gga(x1, x2, x3)  =  divC_in_gga(x1, x2)
0  =  0
divC_out_gga(x1, x2, x3)  =  divC_out_gga
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
minusB_in_gga(x1, x2, x3)  =  minusB_in_gga(x1, x2)
s(x1)  =  s(x1)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
minusA_in_gga(x1, x2, x3)  =  minusA_in_gga(x1, x2)
minusA_out_gga(x1, x2, x3)  =  minusA_out_gga(x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
minusB_out_gga(x1, x2, x3)  =  minusB_out_gga(x3)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x2, x4)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x4)
DIVC_IN_GGA(x1, x2, x3)  =  DIVC_IN_GGA(x1, x2)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x2, x4)

We have to consider all (P,R,Pi)-chains

(17) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIVC_IN_GGA(T47, T64, s(T35)) → U4_GGA(T47, T64, T35, minusB_in_gga(T47, T64, T71))
U4_GGA(T47, T64, T35, minusB_out_gga(T47, T64, T71)) → DIVC_IN_GGA(T71, T64, T35)

The TRS R consists of the following rules:

minusB_in_gga(s(T84), s(T85), X118) → U2_gga(T84, T85, X118, minusA_in_gga(T84, T85, X118))
U2_gga(T84, T85, X118, minusA_out_gga(T84, T85, X118)) → minusB_out_gga(s(T84), s(T85), X118)
minusA_in_gga(0, T92, 0) → minusA_out_gga(0, T92, 0)
minusA_in_gga(T97, 0, T97) → minusA_out_gga(T97, 0, T97)
minusA_in_gga(s(T102), s(T103), X142) → U1_gga(T102, T103, X142, minusA_in_gga(T102, T103, X142))
U1_gga(T102, T103, X142, minusA_out_gga(T102, T103, X142)) → minusA_out_gga(s(T102), s(T103), X142)

The argument filtering Pi contains the following mapping:
0  =  0
minusB_in_gga(x1, x2, x3)  =  minusB_in_gga(x1, x2)
s(x1)  =  s(x1)
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
minusA_in_gga(x1, x2, x3)  =  minusA_in_gga(x1, x2)
minusA_out_gga(x1, x2, x3)  =  minusA_out_gga(x3)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
minusB_out_gga(x1, x2, x3)  =  minusB_out_gga(x3)
DIVC_IN_GGA(x1, x2, x3)  =  DIVC_IN_GGA(x1, x2)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x2, x4)

We have to consider all (P,R,Pi)-chains

(19) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIVC_IN_GGA(T47, T64) → U4_GGA(T64, minusB_in_gga(T47, T64))
U4_GGA(T64, minusB_out_gga(T71)) → DIVC_IN_GGA(T71, T64)

The TRS R consists of the following rules:

minusB_in_gga(s(T84), s(T85)) → U2_gga(minusA_in_gga(T84, T85))
U2_gga(minusA_out_gga(X118)) → minusB_out_gga(X118)
minusA_in_gga(0, T92) → minusA_out_gga(0)
minusA_in_gga(T97, 0) → minusA_out_gga(T97)
minusA_in_gga(s(T102), s(T103)) → U1_gga(minusA_in_gga(T102, T103))
U1_gga(minusA_out_gga(X142)) → minusA_out_gga(X142)

The set Q consists of the following terms:

minusB_in_gga(x0, x1)
U2_gga(x0)
minusA_in_gga(x0, x1)
U1_gga(x0)

We have to consider all (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04,JAR06].


The following pairs can be oriented strictly and are deleted.


U4_GGA(T64, minusB_out_gga(T71)) → DIVC_IN_GGA(T71, T64)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(DIVC_IN_GGA(x1, x2)) = 1 + x1   
POL(U1_gga(x1)) = x1   
POL(U2_gga(x1)) = x1   
POL(U4_GGA(x1, x2)) = 1 + x2   
POL(minusA_in_gga(x1, x2)) = 1 + x1   
POL(minusA_out_gga(x1)) = 1 + x1   
POL(minusB_in_gga(x1, x2)) = x1   
POL(minusB_out_gga(x1)) = 1 + x1   
POL(s(x1)) = 1 + x1   

The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented:

minusB_in_gga(s(T84), s(T85)) → U2_gga(minusA_in_gga(T84, T85))
minusA_in_gga(0, T92) → minusA_out_gga(0)
minusA_in_gga(T97, 0) → minusA_out_gga(T97)
minusA_in_gga(s(T102), s(T103)) → U1_gga(minusA_in_gga(T102, T103))
U2_gga(minusA_out_gga(X118)) → minusB_out_gga(X118)
U1_gga(minusA_out_gga(X142)) → minusA_out_gga(X142)

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIVC_IN_GGA(T47, T64) → U4_GGA(T64, minusB_in_gga(T47, T64))

The TRS R consists of the following rules:

minusB_in_gga(s(T84), s(T85)) → U2_gga(minusA_in_gga(T84, T85))
U2_gga(minusA_out_gga(X118)) → minusB_out_gga(X118)
minusA_in_gga(0, T92) → minusA_out_gga(0)
minusA_in_gga(T97, 0) → minusA_out_gga(T97)
minusA_in_gga(s(T102), s(T103)) → U1_gga(minusA_in_gga(T102, T103))
U1_gga(minusA_out_gga(X142)) → minusA_out_gga(X142)

The set Q consists of the following terms:

minusB_in_gga(x0, x1)
U2_gga(x0)
minusA_in_gga(x0, x1)
U1_gga(x0)

We have to consider all (P,Q,R)-chains.

(23) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(24) TRUE